A NEW ANKYLOSAURID FROM THE UPPER CRETACEOUS KIRTLAND FORMATION, SAN JUAN BASIN, WITH COMMENTS ON THE DIVERSITY OF ANKYLOSAURIDS IN NEW MEXICO

MICHAEL E. BURNS1 AND ROBERT M. SULLIVAN2

1 Department of Biological Sciences, University of Alberta, 11145 Saskatchewan Dr., Edmonton, Alberta, Canada T6G 2E9; 2 Section of Paleontology and Geology, The State Museum of Pennsylvania, 300 North Street, Harrisburg, PA 17120-0024

Abstract—A new, small ankylosaurid, Ahshislepelta minor, from the upper Campanian Kirtland Formation (Hunter Wash Member), San Juan Basin, New Mexico, consists of shoulder girdle and forelimb elements, vertebral fragments, and numerous osteoderms. Ahshislepelta minor differs from other ankylosaurids on the basis of a prominent dorsolateral overhang of the acromion and its osteoderm texture. It ranks as one of the most complete ankylosaur specimens known from New Mexico and adds to our understanding of ankylosaurid paleobiogeography, stratigraphy, and taxonomy.

INTRODUCTION

For over a century, the Upper Cretaceous terrestrial deposits of the San Juan Basin, New Mexico, have produced significant specimens of extinct vertebrates. Several type specimens of dinosaurs, representing tyrannosaurids, ornithomimids, dromaeosaurids, hadrosaurids, ankylosaurs (nodosaurids and ankylosaurids), and ceratopsids, have been discovered and named (Sullivan and Lucas, 2006). Among the most significant taxa are the iconic lambeosaurines Parasaurolophus tubicen Wiman, 1931 and Parasaurolophus cyrtocristatus Ostrem, 1961; the chasmosaurine Pentaceratops sternbergi Osborn, 1923; the titanosaur Alamosaurus sanjuanensis Gilmore, 1922, the only sauropod from the Late Cretaceous of North America; and the unique, and rare, ankylosaur Nodocephalosaurus kirtlandensis Sullivan, 1999.

Ankylosaur (Nodosauridae and Ankylosauridae) remains consist mostly of isolated osteoderms, vertebrae and some incomplete appendicular elements, and have been known for years from the Fruitland and Kirtland formations. Only in recent years has more diagnostic material been discovered and identified. A partial left scapula (USNM 8571) and several osteoderms (USNM 8610, 8611) were referred to “Scelidosauridae” by Gilmore (1919); the scapula was later identified as ?Panoplosaurus (Lehman, 1981). Ford (2000) named Glyptodontopelta, based on USNM 8610 and placed it in the new subfamily “Stegopeltinae” with Aletopelta and Stegopelta. Burns (2008), in a preliminary review of ankylosaur osteoderms, upheld the validity of Glyptodontopelta. He placed it in the Nodosauridae, thus making the “Stegopeltinae” equivocal due to the uncertain affinities of Aletopelta (Ford and Kirkland, 2001). Edmontonia australis Ford, 2000 was also synonymized with Glyptodontopelta (Burns, 2008).

Although the taxon Euoplocephalus (including cf. Euoplocephalus) is known from the Oldman, Dinosaur Park and Horseshoe Canyon formations of Alberta as well as from the Two Medicine Formation of Montana, its occurrence in the San Juan Basin has never been convincingly demonstrated (Sullivan and Lucas, 2006). Nodocephalosaurus kirtlandensis is known solely from the Kirtland Formation (De-na-zin Member) based on a partial skull and isolated postcranial osteoderms that were subsequently referred to it (Sullivan, 1999; Sullivan and Fowler, 2006).

The holotype (SMP VP-1930), and only known specimen, was found in the lower part of the Kirtland Formation (Hunter Wash Member) in the Ah-shi-sle-pah Wilderness Study Area along the south side of Ah-shi-sle-pah Wash (Fig. 1). The holotype specimen was discovered in 2005 and collected over consecutive field seasons (2005–2009). This new specimen, while incomplete, provides additional information regarding the diversity and distribution of ankylosaurids during the Late Cretaceous in New Mexico.

FIGURE 1. Map of Ah-shi-sle-pah WSA, showing the locality where Ahshislepelta minor was collected.
Ahshislepelta, n. gen.

Type species - Ahshislepelta minor, type and only species.

Distribution - Late Cretaceous (late Campanian), New Mexico.

Etymology - The generic name is derived from the locality of the holotype, Ah-shi-sle-pah Wash (formerly Meyers Creek), San Juan Basin, New Mexico.

Diagnosis - As for species.

Ahshislepelta minor, n. sp.

Holotype - SMP VP-1930, closely associated incomplete postcranial skeleton including partial left girdle and forelimb (scapulocoracoid, humerus, and proximal portion of the radius), right partial scapulocoracoid, numerous vertebral fragments (likely cervical and/or dorsal), complete and fragmentary thoracic osteoderms, and other unidentifiable postcranial fragments.

Type Locality - SW ¼ of Sec. 8, T22N, R10W (precise UTM coordinates on file at the SMP and are available to professional researchers), Ah-shi-sle-pah Wash, San Juan County, New Mexico.

Horizon/Stratum, Provenance and Age - Kirtland Formation (Hunter Wash Member), San Juan Basin, New Mexico; Late Campanian, Late Cretaceous.

Etymology - The species name “minor” is in reference to its small adult size relative to other North American ankylosaurids of similar age.

Diagnosis - Apomorphies of taxon: dorsolateral overhang of scapular acromion process to 25% of the dorsoventral width of the scapula. Differs from other ankylosaurids (with the exception of Euoplocephalus sensu stricto) in its superficial osteodermal surface texture, characterized by uniformly distributed pitted rugosity, and sparse distribution of reticular neurovascular grooves with neurovascular foramina extending perpendicularly to obliquely into the bone.

DESCRIPTION

The holotype specimen of Ahshislepelta minor, SMP VP-1930 (Figs. 2–8), consists of associated anterior postcrania elements and osteoderms. The left forelimb is more than 50% complete, preserving the

FIGURE 2. Ahshislepelta minor, n. gen., n. sp. (SMP VP-1930, holotype). Right scapulocoracoid: A, distal and B, proximal sections in lateral view; C, proximal and D, distal sections in medial view. Dorsal is up. Abbreviations: ac, acromion; cf, coracoid foramen; gc, glenoid cavity; isf, infraspinous fossa; k, keel (on osteoderm); os, osteoderm; r, rib. Scale bar = 10 cm.
partial scapulocoracoid, humerus, and proximal portion of the radius. The right forelimb consists only of a partial scapulocoracoid. In addition, there are numerous vertebral fragments (likely cervical and/or dorsal), complete and fragmentary thoracic osteoderms, and other unidentifiable postcranial fragments.

Scapulocoracoid - The right scapulocoracoid (Fig. 2) is well preserved along the anterior margin of the coracoid to a point just posterior to the acromion, where it is broken. The most distal portion (Fig. 2A, D) of the scapula has three osteoderms on the lateral side and is associated with fragments of two ribs (mostly visible on the medial side). The left scapulocoracoid (Fig. 3) is preserved approximately as far posteriorly as the right scapulocoracoid; however, the ventral margin of the scapula is missing and the entire element has been distorted (postmortem) by shear. The following composite description is based on both right and left scapulocoracoids.

The coracoid is fused completely with the scapula, leaving no indication of a sutural contact between them. It has a blunt, rugose process along the anterodorsal margin for the attachment of the M. biceps brachii and/or M. coracobrachialis. Roughly square, the coracoid is 14 cm dorsoventrally and 16 cm anteroposteriorly. The coracoid foramen (= coracoid fenestra) is anterodorsal to the glenoid cavity, anteroposteriorly elongate, and 2 cm² in area.

The glenoid cavity is open, extends 11 cm anteroposteriorly, and forms an arc such that the scapular margin projects posteroventrally at an 80° angle relative to the coracoid margin. The scapula is not dorsoventrally narrow relative to the coracoid and does not exhibit a prominent scapular neck (as in nodosaurids).

The acromion is a rugose, ridge-like structure along the dorsal margin of the scapula opposite the glenoid cavity. The acromion attains its anteriormost extension posteroventral to the most anterior extent of
FIGURE 4. *Akshislepelta minor*, n. gen., n. sp. (SMP VP-1930, holotype). Left humerus. A, posterior; B, lateral; C, anterior; and D, medial views. Proximal end is up. Abbreviations: *bf*, bicipital fossa; *dp*, deltopectoral crest; *hh*, humeral head; *of*, olecranon fossa; *rc*, radial condyle. Scale bar = 10 cm.
FIGURE 5. *Ahshislepelta minor*, n. gen., n. sp. (SMP VP-1930, holotype). Proximal end of left radius. A, anterior view; B, medial view; C, posterior view; and D, lateral view. Proximal is up. Vertebra. E, anterior axial view; F, left lateral view. Scale bars = 10 cm.
and confirms its natural ventrolateral projection. Ventral to the acromion, cracked, its junction with the scapular blade is visible, well-preserved, not a taphonomic artifact on the right scapulocoracoid. Although it is preserved on the left scapula due to taphonomic shearing. This feature is the glenoid cavity. The prominent lateral overhang of the acromion is not may be from the pelvic region and forelimbs. One osteoderm and several elements were recovered. Most are from the thoracic region, although some central fragments (Fig. 5E-F).

The left humerus (Fig. 4A–D) is 31 cm long and massive, which is characteristic of taxa within the Ankylosauridae. The deltopectoral crest is well-developed and measures 15 cm across the widest portion of the humerus. In posterior view (Fig. 4A), the lateral margin of the deltopectoral crest forms a 23° angle with the long axis of the humerus. A broad, bicipital fossa on the anterior face of the humerus is bounded by the deltopectoral crest and humeral head. Distally, the hemispherical radial condyle is positioned on the anterior face of the humerus. The shallow olecranon fossa and trochlea are largely intact.

The proximal two thirds of the left radius (Fig. 5A–D) are preserved. The shaft and proximal articular surface are oval in proximal view. The proximal articular surface is concave. The articular surface is proportionally expanded to twice the diameter of the diaphysis (8 and 4 cm, respectively).

Vertebrae - Numerous vertebral fragments were recovered and they probably represent parts of the cervicals and/or dorsals, based on their association with elements of the pectoral girdles and forelimb. A few of the more complete vertebrae appear to have laterally compressed neural canals, suggesting that they were dorsoventrally tall dorsals. There are no open sutural facets for the neural arches preserved on any of the central fragments (Fig. 5E-F).

Osteoderms - Numerous osteoderms (Fig. 6) and osteoderm fragments were recovered. Most are from the thoracic region, although some may be from the pelvic region and forelimbs. One osteoderm and several ossicles are preserved in situ superficial to the distal portion of the right scapula. These, along with another series of osteoderms preserved in their original association, display a rosette arrangement of small, interstitial ossicles surrounding the main body osteoderms. The largest osteoderm (Fig. 6H-I), inferred to be a median element from just posterior to the cervical region (due to its similar shape to median thoracic osteoderms of BMNH R5161), is 15 cm long, 12 cm wide and 10 cm high. The smallest complete ossicle has a minimum diameter of 1 cm. The osteoderms are either keeled or circular with off-center apices. Their superficial surface textures (Fig. 7) are smooth to uniformly pitted with a sparse reticular patterns of neurovascular grooves. Their deep surfaces are excavated such that overall osteoderm thicknesses are relatively low.

A petrographic section (Fig. 8) through one osteoderm shows that, histologically, the osteoderm is typical of the ankylosaurid condition (Scheyer and Sander, 2004; Burns, 2008; Hayashi et al., 2010). Distinct superficial and deep fibrolamellar cortices encircle a compact core characterized by randomly-oriented Haversian canals. This osteoderm is relatively thin (7.1 mm), and the superficial cortex is thinner (0.57 mm) than the deep cortex (1.6 mm).

FIGURE 7. Close-up of superficial osteodermal surface texture of *Ahshislepelta minor* from a median keeled osteoderm (Fig. 6H-I).

Due to the fragmentary nature of the vertebrae in SMP VP-1930, neurocentral sutural fusion cannot be assessed for several elements. However, one partial vertebra demonstrates that the absence of a neural spine was due to taphonomic breakage rather than to lack of fusion. In addition, the complete fusion of the scapulocoracoids (and complete resorption of the scapulocoracoid sutures) indicates that the specimen is not a juvenile; rather, it is, at the very least, a subadult and may be fully mature adult. Evidence from small individuals, such as juvenile specimens of *Pinacosaurus grangeri* and a nodosaurid hatchling from the Paw Paw Formation of Texas (Jacobs et al., 1994), shows that these elements were not fused in the early stages of ontogeny. This new specimen falls within the same size range as adult specimens of other ankylosaurid taxa outside of North America based on measurements of the humerus and scapulocoracoids (Fig. 9). The scapulocoracoid of *Ahshislepelta* is larger than that of *Talarurus*; however, based on humeral size (geometric mean) alone, *Ahshislepelta* is smaller than *Talarurus* and *Pinacosaurus grangeri* (adult) but larger than *Pinacosaurus mephistocephalus* and juvenile specimens of *P. grangeri*.

Ahshislepelta occurs stratigraphically low compared to other known ankylosaurs from the San Juan Basin of New Mexico. Regardless of its stratigraphic position, it can be distinguished from these other taxa based on osteodermal characters. The nodosaurid *Glyptodontoptepelta* is diagnosed by a distinct osteodermal surface texture, characterized by a relatively smooth surface, with a dense pattern of reticular neurovascular grooves, and by neurovascular foramina that are oriented obliquely to the surface (Burns, 2008). The ankylosaurid *Nodocephalosaurus* also occurs in the Kirtland Formation, but it is from the younger De-na-zin Member. Each of its osteoderms is characterized by a uniformly distrib-
uted, projecting rugosity, sparse distribution of reticular neurovascular grooves, and neurovascular foramina that extend normally to obliquely into the osteoderm. An osteoderm of *Ahshislepelta* is similar to that of *Nodocephalosaurus*, but has a pitted rugosity profile rather than the prominent, projecting rugosity. The superficial surface texture of *Ahshislepelta* is most similar to the smoother texture type of *Euoplocephalus* (sensu Arbour et al., 2009). Specimens AMNH 5406 and UALVP 31 possess this type of osteoderm textures and are unequivocally referable to *Euoplocephalus*. It is interesting to note the morphological similarities between *Ahshislepelta* and *Nodocephalosaurus*, given the latter occurs higher in the section in the De-na-zin Member of the Kirtland Formation, a difference of about 1.5 Ma based on dating of the strata by Fassett and Steiner (1997).

Despite similarities in osteoderm texture, there is a significant size difference between *Euoplocephalus* (AMNH 5406 and UALVP 31) and the smaller *Ahshislepelta*. The only juvenile specimen referred to *Euoplocephalus* (AMNH 5266) preserves only elements of the hind limbs and vertebrae (Coombs, 1986). The most posterior dorsals of AMNH 5266 are less than 3 cm in diameter, whereas the dorsal centra of SMP VP-1930 are around 5 cm. If the dorsals of SMP VP-1930 are from

TABLE 1. Comparative postcranial measurements for Late Cretaceous ankylosaurids from North America and Asia.

<table>
<thead>
<tr>
<th>Species</th>
<th>Specimen #</th>
<th>maxL</th>
<th>dorsW</th>
<th>SC</th>
<th>LGC</th>
<th>angGC</th>
<th>AC</th>
<th>maxL</th>
<th>proxW</th>
<th>Humerus</th>
<th>midW</th>
<th>distW</th>
<th>angDP</th>
<th>Radius</th>
<th>proxW</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. magniventris</td>
<td>AMNH 5214/5895</td>
<td>69.0</td>
<td>24.5</td>
<td>17.5</td>
<td>71.8</td>
<td>16%</td>
<td>53.9</td>
<td>29.0</td>
<td>10.4</td>
<td>26.0</td>
<td>89.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A. minor</td>
<td>SMP VP-1930</td>
<td>51.5</td>
<td>-</td>
<td>11.4</td>
<td>65.0</td>
<td>25%</td>
<td>31.3</td>
<td>15.4</td>
<td>5.3</td>
<td>11.1</td>
<td>72.3</td>
<td>8.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D. actusquameus</td>
<td>ROM 784</td>
<td>-</td>
</tr>
<tr>
<td>E. tutus</td>
<td>AMNH 5404</td>
<td>67.3</td>
<td>20.6</td>
<td>16.9</td>
<td>-</td>
<td>-</td>
<td>39.9</td>
<td>22.6</td>
<td>8.2</td>
<td>19.2</td>
<td>87.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>UALVP 31</td>
<td>-</td>
<td>18.2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AMNH 5406</td>
<td>51.9</td>
<td>-</td>
<td>19.3</td>
<td>-</td>
<td>-</td>
<td>36.1</td>
<td>20.7</td>
<td>6.9</td>
<td>15.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AMNH 5424</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>51.1</td>
<td>18%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. grangeri</td>
<td>ZPAL MgD-II/1</td>
<td>30.0</td>
<td>-</td>
<td>-</td>
<td>13%</td>
<td>16.0</td>
<td>7.5</td>
<td>3.1</td>
<td>6.5</td>
<td>64.9</td>
<td>3.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PIN 614</td>
<td>60.0</td>
<td>-</td>
<td>10.4</td>
<td>71.8</td>
<td>10%</td>
<td>30.0</td>
<td>13.6</td>
<td>5.4</td>
<td>13.3</td>
<td>85.5</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PIN 3144</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>14.3</td>
<td>6.3</td>
<td>2.6</td>
<td>5.1</td>
<td>72.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. mephistocephalus</td>
<td>IMM 96BM3/1</td>
<td>-</td>
<td>7.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20.0</td>
<td>10.9</td>
<td>-</td>
<td>6.6</td>
<td>-</td>
<td>6.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. chulsanensis</td>
<td>GI SPS 100/151</td>
<td>58.0</td>
<td>15.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13%</td>
<td>30.0</td>
<td>21.2</td>
<td>7.3</td>
<td>16.3</td>
<td>84.2</td>
<td>8.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T. plicatopsineus</td>
<td>PIN 557</td>
<td>60.0</td>
<td>15.0</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>30.0</td>
<td>13.5</td>
<td>5.3</td>
<td>13.7</td>
<td>-</td>
<td>7.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

FIGURE 8. Transverse histological thin section through an osteoderm of *Ahshislepelta* and schematic sketch showing three distinct layers. Scale bar = 1 mm.
the anterior part of the dinosaur, then it is likely a bigger animal than AMNH 5266. This would also correspond to the ontogenetically delayed mineralization of osteoderms, which were not preserved in AMNH 5266. Even relatively complete juvenile ankylosaur specimens lack mature post-cervical osteoderms (Burns et al., 2011) and it is likely that the development of dermal elements was delayed with respect to the endoskeleton (Hayashi et al., 2009).

It is unlikely that SMP VP-1930 is a juvenile referable to *Euoplocephalus*, because evidence shows that is has a coossified scapulocoracoid, dorsal vertebrae, and fully mineralized osteoderms. Moreover, the histology demonstrates that the osteoderms are indeed fully developed, exhibiting mature remodelled Haversian cores characteristic of derived adult ankylosaurids (Scheyer and Sander, 2004; Burns, 2008; Hayashi et al., 2009).

CONCLUSIONS

Ahshislepelta minor (holotype SMP VP-1930) is a new genus and species of ankylosaurid that differs from the other North American Late Cretaceous ankylosaurids (*Ankylosaurus magniventris*, *Euoplocephalus tutus*, *Nodocephalosaurus kirtlandensis* and *Dyoplosaurus acutosquameus*) based on a prominent overhang of the acromion process (~25%) and distinctive osteodermal sculpturing. It is interpreted as being a small sub-adult/adult ankylosaurid based on fusion of the scapulocoracoids, centra and neural arches of the vertebrae, and the remodelled Haversian osteoderm cores characteristic of mature individuals. The taxon is presently restricted to the lower Kirtland Formation (Hunter Wash Member), San Juan Basin, New Mexico.

ACKNOWLEDGMENTS

The authors thank the following for access to their respective institutional collections: Mark Norell, Carl Mehling (AMNH), Kieran Shepherd, and Margaret Currie (CMN); David Evans and Brian Iwama (ROM); James Gardner, Brandon Stirlisiky (TMP); Robert Purdy (USNM); and Magdalena Borsuk-Bialynicka (Polish Academy of Sciences, Warsaw). Funding to MEB was provided by the Dinosaur Research Institute and the Department of Biological Sciences (University of Alberta). Phil Bell (UALVP) and Steven Jasinski (SMP) commented on an early version of this manuscript and Robin Sissons (UALVP) provided photographs of AMNH 5406.

We thank the following individuals who helped collect the holo-
REFERENCES

